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An implicit, numerical energy conserving method is developed for the 
derivative nonlinear Schrodinger (DNLS) equation for periodic bound- 
ary conditions. We find no numerical high frequency modulational 
instabilities in addition to the modulational instability from a linear 
analysis around a nonlinear state for the DNLS equation if the modula- 
tion is small and (k, - a2/2) * T < rr (k, is the wavenumber and a the 
amplitude). The numerical scheme is used to follow the nonlinear 
behavior of the DNLS modulational instability. The numerical code is 
also tested by the evolution for one soliton initial data. These tests show 
that if the modulation is not small compared to the background wave 
amplitude, new nonlinear numerical instabilities are introduced. 
0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The purpose of this work is to study the stability of a 
numerical method designed to solve the derivative non- 
linear Schrodinger (DNLS) equation for periodic boundary 
conditions. The DNLS equation has been used to model 
weakly nonlinear, dispersive, and circular polarized parallel 
propagating Alfvin waves [l-3]. It has also been used to 
model extremely short solitary waves in optical fibers [4]. 
The DNLS equation can be written in the form [ 1 ] 

(1) 

Here q(x, t) E C is the complex amplitude and x and t are 
normalized space and time coordinates. Two types of exact 
solutions to the DNLS equation have been studied theoreti- 
cally-self-modulated soliton wave packets and constant 
amplitude wave trains. Recent theoretical work [S, 63 have 
extended the DNLS model of parallel propagating Alfven 
waves to include the effect of a small nonlocal term due to 
resonant particles [ 51 and also more general perturbations 
[6]. Numerical works on the DNLS equation have been 
done in [7,8,20,21]. In most of these works the DNLS 
equation are integrated by calculating nonlinearities at spa- 
tial gridpoints and performing time steps at the respective 
discrete points in Fourier space by applying a FFT [9, lo]. 
Dawson et al. [21] have, however, recently discussed a fast 

algorithm using a gauge transformation and a modification 
of the Ablowitz-Ladik method [32]. 

Numerical instability for nonlinear evolution equations 
have only recently been studied in detail. A lot of study 
has been done of the convective equation [ 11-171 and 
lately, also, of augmented Hamiltonian systems [ 181 and 
quasilinear pseudo-parabolic equations [ 191. Our work 
will be based on a method to study numerical modulational 
instability of constant amplitude wave trains, first suggested 
in [22] and worked out in detail in [23] for the NLS equa- 
tion. Since our method will be shown essentially linearly, 
numerically stable (for practical choices of parameters), 
it gives an opportunity to study nonlinear, numerical 
instabilities by numerical tests. 

Whitham and Fornberg [22] have developed a strategy 
to solve nonlinear evolution equations for periodic bound- 
ary conditions by calculating spatial operators in the dis- 
crete Fourier space and the nonlinear terms on a discrete 
grid in space (a pseudospectral method). The leapfrog 
technique is then used to step the solution forward in time 
at each grid point. In this paper a modification of the 
Whitham-Fornberg method will be used which is implicit in 
time. The method will be shown to have good numerical 
stability properties and to be energy conserving (Sections 2 
and 3). Some sample runs of the nonlinear evolution of the 
modulational instability for an initially constant amplitude 
wave train and the evolution of a soliton will be shown in 
Section 4. 

2. A NUMERICAL ENERGY 
CONSERVING METHOD 

We will assume periodic boundary conditions in our 
study of a numerical scheme to solve the DNLS equation. 
The solutions therefore become L-periodic functions in 
space, i.e., q(x + L) = q(x). Such periodic functions can be 
resolved in a Fourier series 

cc 
4(X) = C c, exp(ik,x), 

“= -cc 
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where c, is the Fourier coefficient given by 

1 
s 

L/7- 
c, = - 

L -L/2 
q(x) exp( - ik,x) dx, 

k,,+; 
(3) 

n E Z. 

However, on a computer only a finite number of Fourier 
modes and grid points can be used. The discrete, symmetric 
Fourier transform, F, becomes, when we use an odd number 
(N+ 1) of grid points (xi), 

1 NI2 

4,=(N+l)i=PN,2 
C qj exP( - ik,xj) = (F(qj))n. (4) 

Here 

L 
xj = (N+i je C-W, N/21 

and 

4j = dxj). 

(For convenience the formulas are written for the case when 
N is odd. However, some of the simulations are done for N 
even.) It can be shown that the truncated inversion formula 

W 
Q= C ijn exp(ik,x) (5) 

II= -N/2 

represents qj= 4(xj) = F -‘(g,,) exactly at the grid points. 
To show this, the formula 

(6) 
,I= pNI2 

is needed. Q(x) can therefore be looked upon as an inter- 
polation formula for q(x) based on the (N + 1) grid points. 
This interpolation formula gives us the opportunity to 
estimate operators like, e.g., the derivative of the solution at 
the grid points, 

NJ2 
(ij,), = 1 ik,g, exp(ik,x,). 

n= -N/2 
(7) 

Linear and nonlinear evolution equations have been solved 
by several authors (e.g., [9, 10, 25, 26]), using the so-called 
spectral method which often is implemented with periodic 
boundary conditions and cutoffs in Fourier space to avoid 
numerical instabilities. The Whitham-Fornberg method 
[22,24] claims to show no numerical instabilities due to 

aliasing. Spangler et al. [7] integrated the DNLS equation 
numerically in time in a Fourier space with a cutoff to avoid 
aliasing instabilities. However, the Whitham-Fornberg 
method does not seem to work on the DNLS equation with 
leapfrog time integration in the numerical experiments that 
I have done. An iterative, implicit modification of the 
Whitham-Fornberg method therefore has been developed 
for the DNLS equation. The solution at time step (m + 1) 
and grid point j is found by the implicit scheme 

63) 

Here z is the time step and * denotes complex conjugation. 
Note that the linear terms are integrated exactly while the 
nonlinear terms are consistent with Eq. (1) when r + 0. 

The DNLS equation can be shown to have an infinite 
hierarchy of conservation equations [27]. For vanishing 
and periodic boundary conditions these conservation 
equations define conserved quantities in time. The first two 
conserved quantities for periodic boundary conditions 
are the average complex amplitude (qsv) and total energy 
content (E,) in one period 

1 
s 

LIZ 

qav=L -L/2 q dx, (9) 

s L/2 
E,= Id2 dx. ~L,2 (10) 

Both these conservation laws are reproduced by our 
numerical scheme Eq. (8) and Eq. (6) as 

1 W 1 Nl2 

‘“‘=(N+ 1),=-N,2 ’ “+‘=(N+l)j=pN,2 ’ ~ c T, (11) 

NJ2 NO 
&:p 1 Iq/m+‘12Ax= 1 lq~12Ax, (12) 

j--N/2 j= -N/2 

Ax = L/(N + 1). 

The conservation of the average complex amplitude is 
found by simply looking at the time evolution of the zeroth 
discrete Fourier transform, 4,) from (8 ). The numerical con- 
servation law for the energy, E,,, is obtained by multiplying 
(8) with qjm* and the complex conjugate of (8) with Qjm, 
summing these two expressions and then summing the 
results over the space grid index j. 

Before we leave the numerical energy conserving method, 
we will dwell on its ability to reproduce the dispersion rela- 
tion for the DNLS equation [ 1 ] for a constant amplitude 
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wave train with frequency o, wave number k,, and 
amplitude a, 

o = k,(a2 -k,). (13) 

We represent the discrete version of the wave train as 
(note that in the following, we will use o to represent the 
frequency both in the continuous and discrete case) 

47 = a exp(i(k,x,- wmt)), 

and find the numerical dispersion relation 

sin((w+k~)z)=k,a2r[~(1 +cos((o+k~)~))]~ (14) 

which for k,a2t e 1 can be written 

w z k,(a2[ 1 - +(k,a2z)2] -k,). (15) 

From this expression we deduce that the relative truncation 
error of the dispersion relation is O($(k,a2z)‘). An estimate 
of the relative truncation error for the wave train based on 
(15) is, after a time, t = mr, 

(16) 

The numerical scheme therefore reproduces the nonlinear 
dispersion relation for a constant amplitude wave train well 
for time steps 

r < &k,a2. (17) 

Even if we take care to use parameters corresponding to 
small truncation errors, we can only expect the constant 
amplitude wave train to be well reproduced for total times 
t = mz. such that 

2 
t’ (k,a;)3 z2’ (18) 

However, the nonlinear wave train may be subject to 
growth due to numerical, modulational instabilities. These 
numerical instabilities and the restrictions they put on the 
parameters to reproduce the DNLS results are discussed in 
the next section. 

3. NUMERICAL STABILITY OF THE 
ENERGY CONSERVING METHOD 

The numerical modulational instability of a constant 
amplitude wave train was investigated in [23] for the split- 
step method to integrate the nonlinear Schrodinger (NLS) 

equation in time both for a finite difference and spectral 
method in space. We intend in this section to follow up 
this work on the energy conserving method for the DNLS 
equation. 

3.1. Modulational Instability for the DNLS Equation for 
Periodic Boundary Conditions 

First we will briefly study the modulational instability for 
the DNLS equation for periodic boundary conditions. This 
represents the theoretical state to which our investigation of 
numerical instability should be compared. The modulation 
of the constant amplitude wave train is expressed by 

4=4(1 +G, t)), (19) 

4 = a exp(i(k,x -cot)). (20) 

Here q, 4, and E ( EC) are L-periodic functions on the 
interval [ - $L, $L], and IsI2 4 1. If one puts (19) into 
the DNLS equation, the following approximate equation 
for the modulation is obtained 

E, + i&,, + ik,a2(E + E*) 

+ 2(a2 -k,) E, + a’&,* = 0. (21) 

The perturbation on the amplitude, E(X, t), may be 
expanded in a Fourier series 

4x, t) = f -G(t) exp(&,x), 
“= -m 

where the modulational wavenumber p, = 27w/L, n E Z. 
From (21) i,(t) ‘will be found to be a constant which 
without loss of generality can be set to zero. From (21) we 
can deduce 

(22) 

C,=i 
k,a2+2(a2-k,)p,,--pi a2(k, + CL,) 

-a2(ko-d > -k,a2+2(a2-k,,)pL,+pL;: . 

If one assumes 

we obtain 

A, = i2(a2 - k,) pL, f lpn I ((2k,- a2) a2 - pz)“‘. (23) 

Equation (23) shows that the constant amplitude wave 
train is unstable for k, > a2/2 and marginally stable for 



74 TOR FL/i 

k, < a*/2 (cf. Cl]). The initial disturbance will, if both 
eigenmodes are present, grow exponentially in time for 
0 < pi < a2(2k, -a*). 

3.2. Modulational Instability for the Energy Conserving 
Scheme 

It is intuitively expected that a numerical scheme which 
conserves energy also should show good properties with 
respect to numerical stability. Let us therefore investigate 
this conjecture for small modulations on a constant 
amplitude wave train. The modulation of the constant 
amplitude wave train is written as 

@,” = (1 + E~)U exp(i(k,x, - omr), 
N/2 

E,” = c 6; exp( &xi). 
n= -N/2 

(24) 

The linearized equation for EJ” is found from Eq. (8), 

(25) 

NV 
$,T = 1 pei(bn + kg)*7 + P.x,) 

II , 
in= -NJ2 

s = $ [ 1 + cos((o + ki)z)](ep’wT + eikir), 

s,=$(l +cos((w+k;)z)), 
s, = a(e-i-- + ei4r)*. 

Here the operator a/ax is defined in Eq. (7). The time 
development for the Fourier coefficients of the modulation 
is given by 

iuz*s,(k, + p,,) ei20r 
-k, + ,uL,) ecizwT 1 + ita*s,( -k,, + pL,) > ’ 

(26) 

a, = [l + (ei(pn+ko)Z7 -eikir) eior 

- ita2eior( -k,s + s,(k, + pL,) e’(“n+ k”)2r)], 

b,= -~ra*s,(k,+~,).ei(-(~“-ko)‘+m)r, 

c, = _; ta*s:( -k, + p,) e’((~n+W--W)~, 

d, = [l + (e-i(~“~k)2T_eik~r)e-i,T 

-iiza2e~‘w’(k,s*+s,(-k,+~,)~e~‘~~n~k0~2’)]. 

Let us first make sure that the time developments con- 
verge to the same one that we obtained in Eq. (22)-(23) 
when r + 0. The time evolution of (26) at the m th time step 

Here x,(t) = ennCrJr is the factor which gives the change in 
the complex amplitude of the Fourier coefficients from one 
time step to another. A,(T) is just a different way to express 
this coefficient which is closer to the eigenvalue parameter 
(cf. (23)) in the continuous case. Formally K, are found as 
eigenvalues of A; ‘Gn, 

det(-rc,I+A;‘G,)=O. (28) 

We find growing solutions if IIC,) > 1 or Re(n,) > 0 and 
from this, one should be able to find the exact parameter 
regimes for stable/unstable nearly constant amplitude wave 
trains. However, even if the solution of K, is formally trivial 
the discussion of the exact parameter regime for stability 
seems to be exceedingly complicated in this case. If we make 
an expansion of A,, A,, and G,, for small r we obtain 

A.(z)=AnlJ+/inlZ+ . . . . 

a.,(z)=a,(o)+~(o)i+ ..‘) 

G,(t)=G,(O)+~(O)r+ . . . . 
(29) 

A,(O) = G,(O) = I. 

To lowest order in t we find the eigenvalue A,,,, given by 

After some calculations we obtain exactly the same 
expression for A,,,, as in (23). 

Earlier. we have concluded that the numerical disoersion 
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relation for a constant amplitude wave train is only close to 
the DNLS dispersion relation if (o + ki)7 x /~,,a*7 6 1. 
Since (28) seems to be difficult to discuss otherwise (and 
this restriction is the only way to reproduce the DNLS 
behavior), let us expand (28) with k,a*r as a small 
parameter. It can then be shown that 

A;‘G,c (det A,)-’ ei2pnkor. z: “& , 
( > 

(30) 
2 

b, = - f oa%,(p, + k,)(2 - i/&a27 -kk,a4p;7*) e-ipiz, 

c2 = - i 7u2s:(pL, - k,)(2 + &,a*7 + k,u4pn7*) f2dr, 
i 

d, = eciu:‘(fl, + ikou47), 

fl, = 1 + /l;t*u4 - fg (pi -k$, 

det A n x t + i27u2p, - t2u4(& -k,$ f. 

In this approximation we can reduce (28) to 

(--a, + /?, cos(~~7) + k,u*r sin(pi7))* 

+ (j?, sin(pz7) - k,u*7 cos(pz7))’ 

+ T*a4(p; - k$ E 0. 

K, = e%4w~ ‘PI 
det A,’ 

The solution is obtained as 

c(, z fin cos(piz) +k0u27 sin(pi7) 

* i((/?, sin(pi7) - k,u*r cos(&z))’ 

+ 7*u4(~; -k;))“*. 

(31) 

(32) 

(33) 

The absolute value of the expansion coefficient, Ire, 1, can 
then be found if the term inside the squareroot in Eq. (33) 
is positive (e.g., outside the region of growth for DNLS), 

IK,, I2 = (d, + ~(k,u*r)*)/(d, + ;(k)u*z)*), 

d,, = 1 + $+472 + &(&z47*)*. 
(34) 

Equation (34) shows that the constant wave train is close to 
marginally stable ( IK, 1 c 1) if (k,u*t) 6 1 as it should in the 
parameter regime where no modulational instability is 
expected for the DNLS equation. In addition the numerical 

energy conserving method is stable in this regime since 
IK, I 5 1. It must, however, be cautioned that this analysis 
does not say anything about numerical stability when k,u*z 
approaches one and that we must indeed expect large 
numerical errors if z > l/(k,,u*). 

Let us now try to find the expansion factor, K,, to 0(7*) 
in a situation with growth for the DNLS solution k0 > a*/2 
and O<pi<(2k,-u*)u*. If we assume that pir<l, 
k,u2z $1, and ~,,a*7 $1, we find 

K, = ,A”? = e(fLO+AIT)~ z e40r( 1 + An172), 

A,,, = $L; - p;(k, + a’) u* - +(k,u*)*. 
(35) 

We observe that, both for the situations with growing and 
nongrowing solutions, the numerical scheme gives rise to 
an error of 0(72) compared to the theoretical predictions 
(for each timestep). 

For piz-+O+ we expect to regain the modulational 
instability for the DNLS equation for k, > u2/2. In addition 
there is the possibility that additional strong, high frequency 
modulational instabilities of pure numerical origin, may 
appear as bands of growth around pi7 = kx, k = + 1, + 2, . . . 
[23]. A sufficient condition for stability is that 

(/In sin(pi7) - k,u*t cos(p~z))’ + ‘*u4(pi - ki) > 0. (36) 

If koa2t, a47 4 1, we can only have equality for 
(pz7 - kn) G 1, k 2 1. The solution for the expression (36) 
equal to zero in. this case is approximately 

pi7 z kz + [(2k,u* - u”)z) ((2k,u* - u4)* 72 

- 4u4kxr)1’2]/2, k 20. (37) 

We have a modulational stable wave train if 

I I 
k,-; <&, k>O (38) 

or 

kO<;, k=O. (39) 

Equation (39) is recognized as the stability criterion for a 
constant amplitude wave train solution of the DNLS 
equation. However, additional parameter regions of pure 
numerical origin will be obtained from (38). Of course the 
numerical code will be stable if &27 < II which is the high 
frequency modulational stability criterion obtained in 
[22, 231. What is extraordinary for the energy-conserving 
scheme is that no numerical high frequency modulation 
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instabilities are observed even if pi,27 > q as long as 
parameters are chosen such that 

a2 2 

( > 
k,,-2 z<x. (40) 

But we are already restricted to parameters such that 
k,a2z < 1. In general one will also choose pN,2 > k, to 
resolve the wave train. This means that the severe restriction 
on the time step r < z-’ dx2 as a function of spatial resolu- 
tion, which is reported in [22,23] is greatly alleviated for 
small modulations if, in addition, the amplitude is not too 
large (r <4x/a4). Instead of a modulational stability 
criterion which depends on the spatial resolution, we have 
obtained one which depends solely on the amplitude (a) and 
on the local wavenumber (k,). Strictly, our analysis is only 
relevant for small amplitude modulations on a constant 
amplitude wave train. However, in the next section we will 
show sample runs of the nonlinear evolution of a self- 
modulated soliton wave packet and modulated wave trains. 

4. NUMERICAL TESTS 

The motivation for this section is to document through 
numerical tests that it is indeed possible to run this code for 
the DNLS equation even for timesteps r > 7~~i Ax2 when 
the nonlinear evolution is not too far from the constant 
amplitude case. We will also discuss the possibility of non- 
linear numerical instabilities. Dawson et al. [21] have 
recently discussed a fast code for the DNLS equation using 
a gauge transformation from the AKNS inverse scattering 
problem [28] to the Kaup-Newell inverse scattering 
problem [27]. However, numerical instabilities were not 
discussed and if the code is as fast for large amplitude and 
deep modulations has not been studied. Other workers have 
developed numerical codes for the DNLS equation [ 7,203, 
but none of these workers, as far as I know, have discussed 
nonlinear numerical instabilities. 

The relative truncation error for a constant amplitude 
wave train will by inspection be found to be extremely small 
compared to what we can calculate from numerical simula- 
tions when the wave train is unstable, k, > a2/2. However, 
we can use our estimate of the deviation from the theoretical 
DNLS expansion factor (35) (in the stable case these devia- 
tions give rise to very small errors in the amplitude if the 
modulation amplitude is small) to argue for an estimate for 
the nonlinear relative error. To leading order the error in 
the expansion factor 

I& I = IA,,, I 7’. IK, I. (41) 

Here /1,, is given in Eq. (35). 
The expansion factor will in reality be following a 

recurrence cycle, T,,, (if the solution is recurrent), and we 

intuitively assume (cf. Eq. (40)) that the error in the expan- 
sion factor and the generated error in the solution itself will 
follow a similar recurrence cycle. From Eq. (40), we can 
argue that the maximal relative error during one cycle is 

(42) 

(If we use the natural scaling k, = Xa2 and ~1, = Ya2, we find 
that A -a”~.) Here a, is the maximal amplitude of the 
modulation and CI is some numerical factor which takes care 
of the scaling of other nonlinear effects. For small initial 
modulations (E < 1) an estimate of the maximal amplitude 
can be given from my theoretical and numerical investiga- 
tion in [31] 

2,240 
a1 - 

dko’ 

while the recurrence time is estimated as 

(43) 

T ret (44) 

Here A,, is given as the real part of Eq. (23); amin is the 
minimal amplitude of the modulations which we can 
estimate as amin N &a, where E is the relative modulation 
amplitude. 

One can now suggest the following nonlinear numerical 
instability mechanism. Under stable conditions the numeri- 
cal error in the recurrent amplitude will be locked to the 
recurrence cycle of the unstable mode. However, the 
numerical deviation from the exact recurrent mode will 
presumably be able to excite new recurrent modes with 
amin N ad if the new recurrence time 

T ret 1 G Tm. (45) 

Note that the maximal amplitude (cf. (43)) in these modula- 
tions will be of the same magnitude or larger than the 
original amplitudes. The theoretical DNLS solution will 
therefore be destroyed. If one further makes the assumption 
that the new modulation has approximately the same 
modulation wavenumber as the original, one finds from 
Eqs. (44), (45) the simple stability criterion 

A < amin. (46) 

If instead one assumes that it is the fastest growing mode 
which is excited, one obtains the order of magnitude 
estimate 

A < (amin )“, 
A nOf 

Ic=T-- (47) 
?I0 



NUMERICAL ENERGY CONSERVING METHOD 77 

1 t 
0 Iql 
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FIG. 1. These figures display spatial time series of the numerical solu- 
tion of the DNLS equation for two different numerical time steps. The nor- 
malized amplitude (I = 0.15, the normalized periodic window has a length 
L = 46.54 and is divided into N = 256 points (Ax z 0.18), the wavenumber 
k, = 1.215, the modulational wavenumber k, = 0.135, and the relative 
modulational amplitude E = 5 x 10m2. Here the initial data are chosen as 
q(x) zz &yl + E(e’klx + e-“lX )). The numerical solution of the DNLS 
equation when the numerical time step is r = 0.2 and the time step between 
each solution displayed is At = 100. 

Here AnOf= (2k, -a’) a*/2 is the fastest growing mode’s 
growth rate. (The numerical scheme that we are using is 
implicit and is begun by putting q,i” + ’ z $” on the left side 
of Eq. (8) and by finding a new estimate of @,” + ‘. Only two 
to four iterations usually are used because the numerical 
errors, as we have seen, are of O(r*) anyway. In addition we 
have introduced a cut in Fourier space when calculating the 
nonlinear terms to avoid aliasing instabilities, although this 
does not seem to be necessary in many of the runs.) 

In Figs. la, b and Figs. 2a, b, we have presented numeri- 
cal results where the classical upper limit on the numerical 
time step to avoid high frequency instabilities typically 
would be T,. = (l/z) Ax* x 1.06 x lo-* [22]. In Fig. 1 we are 
runningacasewith~,,=0.135,k0=1.215,c=5x10~*,and 
a = 0.15. This corresponds to A x 8.8. 10e3r (if c( z &) and 
the nonlinear stability criterion T < { ::I. (The smallest value 
corresponds to the fastest growing mode.) When T = 0.2, we 

a 

1 t 
0 'q1 

46 5 

find A z 1.8 x 10U3, which can be compared with the 
numerically calculated relative error in the first sideband, 
A est z 1.8 x 10-3. For T = 0.5 the numerical solution 
becomes unstable when the relative error becomes large 
enough. 

In Figs. 2a, b we display a case with CL,, =0.675, 
k, = 1.215, E = 5 x lo-*, and a= 0.5. Now A ~0.136~ and 
the nonlinear stability criterion is T < (y:z x i0-2. For Fig. 2a, 
T = 2 x 10e3, A z 2.7 x 10P4, while A,,, z 1.2 x 10P4. The 
solution in this case is much more deeply modulated and 
further from a constant amplitude wave train. In Fig. 2b 
we use T = 5 x lo-*; i.e., we are close to the estimated 
unstable regime. Here A = 6.8 x lop3 and A,,, E 4.1 x 10m3. 
The wave train survives one recurrence period before it 
becomes unstable near the second maximum. (The program 
usually obtains overflow condition when the errors can be 
seen with the eye. Therefore the unstable solution is not 
particularly spectacular.) 

Finally, we will present a numerical solution which is far 
from a constant amplitude wave train. Here we have taken 
an anomalous soliton with velocity u = 1.5, width 6 = f and 
a maximum amplitude, a mz 2.7 (cf. [29]). Notice that 
when t = 9, the soliton shape tits exactly with the initial one 
and the position corresponds to what we can predict on a 
periodic grid from the given soliton velocity. The spatial 
grid step Ax z 8.9 x lo-* corresponds to T, z 2.8 x 10P3. 
The time step used in this case is T = 2.5 x 10e4, i.e., T < T,. 

However, for T 2 1O-3 the solution becomes numerical 
unstable. 

The local wavelength and frequency of a DNLS soliton 
is [29] 

k=k,+$a*, 

v = v. + ava*, 
(48) 

which corresponds to a local phase velocity upk = v/k. Here 
k, and v0 is the background wavenumber and frequency. If 

b 

1 t 
0 0 ‘ql 

0 X- Lb 5 

FIG. 2. This figure also displays spatial time series of the numerical solution of the DNLS equation. In this case the normalized amplitude (2 = 0.5, 
the normalized periodic window has a length L = 46.54 and is divided into N = 256 points, the wavenumber k, = 1.215, the modulational wavenumber 
k, = 0.675, and the relative modulational amplitude is E = 5 x 10m2. (a) The basic numerical integration time step is r = 2 x lo-’ and the time step between 
each time series is At = 10. (b) The basic numerical integration time is r = 5 x 10m2 and the time step between each time series is At = 5. 
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FIG. 3. Snapshots of the development of an anomalous soliton at the 
normalized time r = 0 and r = 9. The soliton parameters (cf. our work [29]) 
are (p,, y,,) = (0.375,0.375) corresponding to a background wavenumber 
I/q, 1 = 0.75 and soliton velocity o = 1.5. The periodic window has a length 
L=20 divided into 225 points (dx x8.89 x IO-*). The basic numerical 
integration timestep is r = 2.5 x 10p4. 

the velocity is not close to zero and the amplitude is large 
enough, we get up,, z v. The characteristic timescale for the 
soliton is now 

vph v 
(49) 

The relative error is assumed to accumulate and scale as 5. CONCLUSIONS 

A z k;rt. (50) Our conclusion is that it is possible to run near constant 
amplitude wave trains.with the energy conserving method 
even if r 9 2, = z- ’ Ax’-i.e., no high frequency modula- 
tional instabilities occur. However, the relative error of 
deeply modulated recurrent wavetrains scales as A - u47. 
This deviation from the theoretical recurrent mode may 
excite new modulational unstable modes which we conjec- 
ture will give rise to a nonlinear numerical instability if A is 
such that the recurrence time of the new modes is less than 
the recurrence time of the original one. We suggest that 
methods with a A which is higher order in r and with no 
high frequency numerical instabilities should be searched 
for to avoid this nonlinear instability. 

(ki is put there to obtain a4 scaling also here.) However, in 
analogy with the recurrent modulations, we investigate if 
the soliton can adjust to the numerically accumulated error 
during the characteristic time scale 

The fastest growing mode for the local wavenumber k z ia’ 
will correspond to a growth rate and a modulation wave- 
number which scale as A,= &N a4/4. These estimates give 
a recurrence time 

T recs (52) 

where y is some numerical factor. 
We conjecture in analogy with the recurrent modulations 

that the soliton become numerically unstable when the 
recurrence time for the fastest growing mode is less than the 
soliton’s characteristic time 

Trees G tc. (53) 

When we formulate this as a criterion for A and z, we obtain 

A,>4 
2 J 3y.e -Ye 

282 
2 6 

J 

(54) 

3Y.K.e ~l’(&4)~(6/~). 3 
0 

if we take y z 1.5 the numerically calculated instability 
criterion are approximately reproduced. 

Note that, both for solitons and modulated wave trains, 
we obtain stability criterions which depend strongly on 
amplitude. This is probably the reason for the numerical 
problems in following unstable wavetrains near k, > a*/2 
and that nobody so far has reported soliton collisions. 

I suggest that the nonlinear numerical instability 
mechanism which have been reported here will be of the 
same type for any method with an error for each time step 
of some order in r (except that some methods may also have 
high frequency instabilities). The way out seems after this 
remark pretty obvious. One should make A of higher order 
in r. This can only be done by using a higher order method 
with no high frequency instabilities (e.g., T. Hada has 
told me that he is using a fourth-order, absolutely stable 
Runge-Kutta-type method.) 
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